rec. itu-r p.835-3 7 recommendation itu-r p.835-3 reference standard atmospheres (question itu-r 201/3) (1992-1994-1997-1999)

Rec. ITU-R P.835-3 7
RECOMMENDATION ITU-R P.835-3
REFERENCE STANDARD ATMOSPHERES
(Question ITU-R 201/3)
(1992-1994-1997-1999)
Rec. ITU-R P.835-3
The ITU Radiocommunication Assembly,
considering
a) the necessity for a reference standard atmosphere for use in
calculating gaseous attenuation along an Earth‑space path,
recommends
1 that the standard atmospheres in Annex 1 be used to determine
temperature, pressure and water-vapour pressure as a function of
altitude, for calculating gaseous attenuation when more reliable local
data are not available;
2 that the experimental data in Annex 2 be used for the locations of
interest when seasonal and monthly variations are concerned.
ANNEX 1
1 Mean annual global reference atmosphere
=========================================
The following reference standard atmosphere reflects the annual mean
profiles when averaged across the globe.
1.1 Temperature and pressure
----------------------------
The reference standard atmosphere is based on the United States
Standard Atmosphere, 1976, in which the atmosphere is divided into
seven successive layers showing linear variation with temperature, as
given in Fig. 1.
The temperature T at height h is given by:
T(h)  Ti  Li (h – Hi) K (1)
where:
Ti  T(Hi) (2)
and Li is the temperature gradient starting at altitude Hi and is
given in Table 1.
TABLE 1
Subscript, i
Altitude, Hi
(km)
Temperature gradient, Li
(K/km)
0
0
– 6.5
1
11
0.0
2
20
1.0
3
32
2.8
4
47
0.0
5
51
– 2.8
6
71
– 2.0
7
85

FIGURE 0835-01
When the temperature gradient Li  0, pressure is given by the
equation:
hPa (3)
and when the temperature gradient Li  0, pressure is obtained from
the equation:
hPa (4)
The ground-level standard temperature and pressure are:
(5)
Note that above about 85 km altitude, local thermodynamic equilibrium
of the atmosphere starts to break down, and the hydrostatic equation,
on which the above equations are based, is no longer valid.
1.2 Water-vapour pressure
-------------------------
The distribution of water vapour in the atmosphere is generally highly
variable, but may be approximated by the equation:
(h)  0 exp (–h / h0) g/m3 (6)
where the scale height h0  2 km, and the standard ground-level
water-vapour density is:
0  7.5 g/m3 (7)
Vapour pressure is obtained from the density using the equation (see
Recommendation ITU-R P.453):
hPa (8)
Water-vapour density decreases exponentially with increasing altitude,
up to an altitude where the mixing ratio e (h)/P(h)  2  10–6. Above
this altitude, the mixing ratio is assumed to be constant.
1.3 Dry atmosphere for attenuation calculations
-----------------------------------------------
The profile of the density of atmospheric gases other than water
vapour (the “dry atmosphere”) may be found from the temperature and
pressure profiles given in § 1.1.
For attenuation calculations, this density profile may be approximated
by an exponential profile according to equation (6) with:
h0  6 km (9)
2 Low-latitude annual reference atmosphere
==========================================
For low latitudes (smaller than 22°) the seasonal variations are not
very important and a single annual profile can be used.
The temperature T (K) at height h (km) is given by:
T(h)  300.4222 – 6.3533 h  0.005886 h2 for 0  h  17
T(h)  194  (h – 17) 2.533 for 17  h  47
T(h)  270 for 47  h  52
T(h)  270 – (h – 52) 3.0714 for 52  h  80
T(h)  184 for 80  h  100
while the pressure P (hPa):
P(h)  1012.0306 – 109.0338 h  3.6316 h2 for 0  h  10
P(h)  P10 exp [– 0.147 (h – 10)] for 10 = h = 72
P(h)  P72 exp [– 0.165 (h – 72)] for 72 = h = 100
where P10 and P72 are the pressures at 10 and 72 km respectively.
For water vapour (g/m3):
r(h)  19.6542 exp [– 0.2313 h – 0.1122 h2  0.01351 h3
– 0.0005923 h4] for 0  h  15
r(h)  0 for h  15
3 Mid-latitude reference atmosphere
===================================
For mid-latitudes (between 22 and 45) the following profiles may be
used for the summer and winter.
3.1 Summer mid-latitude
-----------------------
The temperature T (K) at height h (km) is given by:
T(h)  294.9838 – 5.2159 h – 0.07109 h2 for 0  h  13
T(h)  215.5 for 13  h  17
T(h)  215.5 exp [(h – 17) 0.008128] for 17  h  47
T(h)  275 for 47  h  53
T(h)  275  {1– exp [(h – 53) 0.06] } 20 for 53  h  80
T(h)  175 for 80  h  100
while the pressure P (hPa):
P(h)  1012.8186 – 111.5569 h  3.8646 h2 for 0  h  10
P(h)  P10 exp [– 0.147 (h – 10)] for 10  h  72
P(h)  P72 exp [– 0.165 (h – 72)] for 72  h  100
where P10 and P72 are the pressures at 10 and 72 km respectively.
For water vapour (g/m3):
r(h)  14.3542 exp [– 0.4174 h – 0.02290 h2  0.001007 h3] for 0  h 
10
r(h)  0 for h  10
3.2 Winter mid-latitude
-----------------------
The temperature T (K) at height h (km) is given by:
T(h)  272.7241 – 3.6217 h – 0.1759 h2 for 0  h  10
T(h)  218 for 10  h  33
T(h)  218  (h – 33) 3.3571 for 33  h  47
T(h)  265 for 47  h  53
T(h)  265 – (h – 53) 2.0370 for 53  h  80
T(h)  210 for 80  h  100
while the pressure P (hPa):
P(h)  1018.8627 – 124.2954 h  4.8307 h2 for 0  h  10
P(h)  P10 exp [– 0.147 (h – 10)] for 10  h  72
P(h)  P72 exp [– 0.155 (h – 72)] for 72  h  100
where P10 and P72 are the pressures at 10 and 72 km respectively.
For water vapour (g/m3):
r(h)  3.4742 exp [– 0.2697 h – 0.03604 h2  0.0004489 h3] for 0  h 
10
r(h)  0 for h  10
4 High latitude reference atmosphere
====================================
For high latitudes (higher than 45) the following profiles may be
used for the summer and winter.
4.1 Summer high latitude
------------------------
The temperature T (K) at height h (km) is given by:
T(h)  286.8374 – 4.7805 h – 0.1402 h2 for 0  h  10
T(h)  225 for 10  h  23
T(h)  225 exp [(h – 23) 0.008317] for 23  h  48
T(h)  277 for 48  h  53
T(h)  277 – (h – 53) 4.0769 for 53  h  79
T(h)  171 for 79  h  100
while the pressure P (hPa):
P(h)  1008.0278 – 113.2494 h  3.9408 h2 for 0  h  10
P(h)  P10 exp [–0.140 (h – 10)] for 10  h  72
P(h)  P72 exp [–0.165 (h – 72)] for 72  h  100
where P10 and P72 are the pressures at 10 and 72 km respectively.
For water vapour (g/m3):
r(h)  8.988 exp [– 0.3614 h – 0.005402 h2 – 0.001955 h3] for 0  h 
15
r(h)  0 for h  15
4.2 Winter high latitude
------------------------
The temperature T (K) at height h (km) is given by:
T(h)  257.4345  2.3474 h – 1.5479 h2  0.08473 h3 for 0  h  8.5
T(h)  217.5 for 8.5  h  30
T(h)  217.5  (h – 30) 2.125 for 30  h  50
T(h)  260 for 50  h  54
T(h)  260 – (h – 54) 1.667 for 54  h  100
while the pressure P (hPa):
P(h)  1010.8828 – 122.2411 h  4.554 h2 for 0  h  10
P(h)  P10 exp [–0.147 (h – 10)] for 10  h  72
P(h)  P72 exp [–0.150 (h – 72)] for 72  h  100
where P10 and P72 are the pressures at 10 and 72 km respectively.
For water vapour (g/m3):
r(h)  1.2319 exp [0.07481 h – 0.0981 h2  0.00281 h3] for 0  h  10
r(h)  0 for h  10
BIBLIOGRAPHY
BRUSSAARD, G., DAMOSSO, E. and STOLA, L. [October, 1983]
Characterisation of the 50-70 GHz band for space communications. CSELT
Rapporti Tecnici, Vol. XI, No. 5.
ANNEX 2
1 Experimental data of atmospheric vertical profiles
====================================================
Monthly averages of vertical profiles of temperature, pressure and
relative humidity were calculated for 353 locations over the world,
using 10 years (1980-1989) of radiosonde observations. This dataset
(DST.STD) is available from ITU/BR and contains the mean monthly
vertical profiles, for both 00.00 UTC and 12.00 UTC, of pressure,
temperature and relative humidity. These profiles, calculated in the
absence of rain, range from 0 to 16 km with a step of 500 m. An
example of one profile is given in Table 2.
Above that altitude, extrapolation can be performed by using the
reference profiles given in Annex 1. To translate the relative
humidity into absolute values of water vapour density, the formulae
contained in Recommendation ITU-R P.453 should be used.
TABLE 2
DST.STD data format – Example of month average profile
NNNNNMMT NL
01384111 33
Press(hPa)
Z(km)
Temp(K)
RH(%/100)
.000
.00
273.16
.000E+00
950.734
.50
273.14
.730E+00
892.926
1.00
271.16
.672E+00
837.925
1.50
269.03
.581E+00
786.709
2.00
266.60
.516E+00
737.580
2.50
264.01
.467E+00
691.017
3.00
261.18
.445E+00
647.037
3.50
258.14
.427E+00
605.609
4.00
255.07
.413E+00
566.371
4.50
251.86
.402E+00
528.962
5.00
248.62
.400E+00
493.406
5.50
245.34
.362E+00
460.513
6.00
241.99
.329E+00
429.041
6.50
238.62
.297E+00
398.949
7.00
235.19
.275E+00
371.513
7.50
231.82
.237E+00
345.238
8.00
228.65
.179E+00
319.967
8.50
225.70
.139E+00
296.107
9.00
223.06
.107E+00
271.381
9.50
221.51
.943E-01
250.931
10.00
219.68
.815E-01
232.328
10.50
218.39
.723E-01
214.863
11.00
217.63
.642E-01
196.348
11.50
217.70
.539E-01
181.888
12.00
217.56
.477E-01
167.454
12.50
217.86
.421E-01
153.456
13.00
218.37
.366E-01
140.897
13.50
218.51
.317E-01
129.541
14.00
218.67
.272E-01
120.027
14.50
218.27
.253E-01
110.853
15.00
217.74
.235E-01
101.978
15.50
217.22
.220E-01
91.925
16.00
217.89
.196E-01
Legend
NNNNN = WMO Station Number: 01384 MM = Month: 11
T = Launch time: 1 (1 = 00.00 UTC, 2 = 12.00 UTC) NL = Fixed
number of profile levels: 33
Press(hPa) = Atmospheric Pressure Z(km) = Height above sea level
Temp(K) = Air Temperature RH(%/100) = Relative Humidity (as a
fraction)
NOTE 1 – The first level (at surface) may be set to zero if
unrecorded.

  • PLAN WYNIKOWY Z WYMAGANIAMI EDUKACYJNYMI PRZEDMIOTU WIEDZA O SPOŁECZEŃSTWIE
  • CONTACTO JUDY IANNACCONE 22 DE JUNIO DEL 2004
  • TITRE DE LA RECHERCHE À INSCRIRE 1 DE
  • ZAPISNIK O IZVOLITVI SINDIKALNEGA ZAUPNIKA SVIZ SLOVENIJE ZAVOD IME
  • IES “PEDRO DE LUNA” UNIVERSIDAD 24 TFNO 976
  • FSHE 110 MODULE 05 SOUPS SOUPS HELPFUL
  • FORM 5 COVER FORM FOR A SAFETY REPORT TO
  • FINAL REPORT OF 2018 PROJECT SGA FS USB PROJECT
  • SOLICITUD DE BAJA VOLUNTARIA NOMBRE Y APELLIDOS
  • STUDENT USERNAME 2020 ESSAY CONTEST NARRATIVE RUBRIC
  • LEGE NR 1 DIN 5 IANUARIE 2011 LEGEA EDUCAŢIEI
  • HELPFUL LINKS FOR YOUR PETS HEALTH! NOT SURE HOW
  • GUIDANCE WHAT EQUALITY LAW MEANS FOR YOU AS A
  • SEMINARIO INTERNACIONAL PROBLEMAS DE LA POBLACION MUNDIAL EN EL
  • ANNEX NO……… DATED…………… TO THE CONTRACT NO…………FOR THE PERFORMANCE
  • EFFECT OF PH ON THE HEAT RESISTANCE OF SPORES
  • FICHE OUTIL J’ACCUEILLE DANS MA CLASSE UN ÉLÈVE
  • SI UNIT PREFIXES MILLI (M) 103 MICRO ()
  • FEDERACIÓN ESPAÑOLA DE LUCHAS OLÍMPICAS Y DISCIPLINAS ASOCIADAS DEPARTAMENTO
  • EXP021 DICTAMEN NÚM I2019008 H CONSEJO GENERAL UNIVERSITARIO P
  • OBRAZAC ZA PRIJAVU GOTOVINSKIH I SUMNJIVIH TRANSAKCIJA I SUMNJIVIH
  • ZAKON O ZAŠTITI OD NASILJA U OBITELJI I OSNOVNE
  • ADAPTED BY ORZU KAMOLOVA DECCLIC CORPORATION USING MOODLE TEXT
  • P ÁGINA 9 DE 9 BOTELLA RECICLADA PARA FACILITAR
  • MÍSTO PRO KOLEK V HODNOTĚ 2000 KČ ŽÁDOST
  • ACTA DE ADJUDICACION CONSIDERANDO QUE MEDIANTE RESOLUCIÓN EL PRESIDENTE
  • LA CONFERENCIA INTERAMERICANA BOGATÁ COLOMBIA – JUNIO 2015 LAS
  • SUBJECT ACCESS REQUEST TO ACCESS YOUR PERSONAL DATA YOU
  • EVALUATING THE VIABILITY OF OBTAINING DNA PROFILES FROM DNA
  • SAMPLE RESOLUTION ADOPTION OF COMMERCIAL (AND INDUSTRIAL) REHABILITATION GUIDELINES