

 FusionPDF

 Menu

 	Home
	DMCA
	Privacy Policy
	Contacto

 Menu

 Matlab Serial Communication Tutorial Esposito 2009 Tutorial Serial Communication

			

 matlab serial communication tutorial esposito 2009 tutorial: serial communication in matlab ==

 Matlab Serial Communication Tutorial
 Esposito 2009
 Tutorial: Serial Communication in Matlab
 ==
 Objective: This tutorial teaches you how to use Matlab serial objects
 to interact with external hardware.
 Disclaimer: The tutorial is not a replacement for reading the Matlab
 Documentation on Serial Interfacing; nor does it conver all the
 concepts and implementation details of serial communication and the
 RS-232 protocol. The examples are soley geared toward the types of
 applications we see in our projects such as sending commands to
 control robots, motors, or reading sensors such as GPS, laser
 scanners, compasses, etc. Other types of eqpitment may require
 different techniques not covered here.
 Contact:
 Associate Professor Joel M. Esposito

 Systems Engineering Department
 United States Naval Academy,
 Annapolis, MD 21402
 http://www.usna.edu/Users/weapsys/esposito/
 Hardware Devices
 ================
 A lot of external hardware devices are designed to connect to a PC
 through a Serial Port. Examples in our department include Koala
 Robots, iCreate Robots, Scorbot, Robix Kits; and lots of sensors such
 as the Sick or Hokuyo Laser Scanners, the Northstar kits, GPS,
 Compasses, etc
 Traditionally all PC's had a serial port in the back. However, now
 they are being replaced by USB ports. "Serial ports" take many forms.
 For example the Xbee modems create a wireless serial link. Many
 laptops don't have a serial port – just USB ports. USB to Serial
 Converters or Bluetooth Connections can function as "virtual serial
 ports", meaning that once set up correctly Matlab just veiws them as
 additional serrial ports.
 Basic Concepts

 *
 Cabling:
 *
 Serial Message: You litterally send or recive data over this cable
 on a single pin as a series of bytes (1 byte = 8 bits or 0 – 255).
 *
 Example: [0] [12] [27] [42] [112]
 *
 Terminators: Just as we use a period in English to dentote the end
 of a sentence, we use a "terminator" to indicate the end of a
 series of bytes that constitute a message.
 *
 The terminator can be anything the sender and receiver agree
 on but a "carrage return" (\r) is a common choice.
 *
 Buffer: If you don't understand how a buffer works, you will never
 understand serial communication. Say a sensor is streaming back
 data to your program, more frequently than your program reads it.
 On your computer this data gets stored in something called a
 buffer, until you decide to read it. Think of a buffer as a list.
 *
 As new data values come in they get added to the bottom of the
 list (most recent data).
 *
 If your program reads a value from the buffer, it starts at
 the top of the list (oldest data). Once you read a byte of
 data, it is no longer in the buffer; and the data in the
 second position on the list moves up to the top position, etc.
 *
 The buffer has a finite length (you set it). This means there
 is a limit to how long the list can get. Once the buffer is
 totally full, what happens when the sensor tries to send new
 data to the buffer? The oldest data (top of the list) gets
 discarded forever, and all the entries move up, to make room
 on the bottom of the list for new data.
 *
 If you'rer smart about using the buffer, you can make sure you
 never miss any data. If your not smart about it, it is easy to
 loose data or use old data.
 Ex: We create a buffer of length 5. Initially it is empty
 1
 2
 3
 4
 5
 The sensor writes a value (10) to it
 1
 10
 2
 3
 4
 5
 The sensor writes another value (6) to it, Note that the oldest data
 is in the first position and new data fills in the buffer from the
 bottom.
 1
 10
 2
 6
 3
 4
 5
 Now we read a value from it into the variable x.
 1
 6
 2
 3
 4
 5
 x= 10. Note that once we read the value it is no longer in the buffer!
 Also note that we read the top element which was the oldest data.
 Here is anothet scenario. The buffer is full
 1
 10
 2
 6
 3
 12
 4
 3
 5
 1
 Now the sensor writes a value to it (4)
 1
 6
 2
 12
 3
 3
 4
 1
 5
 4
 The oldest data, in the top entry, (10) is discarded forever and all
 the entries shift up 1 spot, to make room for the new value (4).
 *
 Message Length and Check Sum: It's very possible, especially when
 you use wireless serial connections that individual bytes in the
 message can get lost or garbled. There are a lot of complex
 schemes out there to check that this doesn't happen. Here are two
 common ones that show up in some serial command interfaces.
 *
 One of the bytes in the message might indicate the length of
 the message (the total number of bytes the message should
 contain).
 *
 Another byte might be a checksum. A checksum is a number
 computed using a simple arithmetic formula that can help you
 determine if the message has been garbled. Here is an example:
 CheckSum = 255 – Sum of all data bytes in message.
 *
 On the receiving end you can check that the length and
 checksum for the message you received match the actual
 message. If they don't, you can decide to discard the message
 or request new data from the device.
 *
 Example: [4] [253] [1] [1] where 4 is the length (includes
 length and checksum bytes), [1] [1] are the data bytes
 (meaning depends on what the sensor does), and 253 = 255 –
 (1+1) is the checksum (does not include itself or length
 byte).
 *
 Streaming vs. polling:
 *
 Polling a sensor is simple. You send it a message requesting
 some data each time you want to take a measurement; then it
 returns a message containing that data.
 *
 Streaming means that you send the sensor a message to turn it
 on. Then it begins sending back measurements as it gets them –
 usually at a regular interval
 What You Need to Know Before You Continue

 Go the computer you will use, your device, and all the documentation
 that came with it.
 *
 Find the Serial Port on the PC. If there is none, use a
 USB-to-Serial Converter. You may have to install drivers for it.
 Connect the device to the PC.
 *
 COM Port Number: Each serial port on the PC is labeled COM1, COM2,
 etc. You need to figure out which one you're attached to.
 *
 If there is a serial port at the back of the computer, chances
 are it's COM1. However, even if there is only 1 serial port
 visible in the back, its possible its COM2, or COM3 especially
 if there is a modem.
 *
 If you use a converter or blue tooth the port number gets
 assigned in software and may change each time you disconnect
 or reconnect the device. On Windows XP (or vista classic
 view), go to Control
 Panel/System/Hardware/DeviceManager/Ports/Comm Ports and
 verify which port your device was assigned
 *
 Device Settings: Go to the documentation that came with your
 device and identify the Communication settings. We'll need this
 for the next section. Here is an example:
 *
 Baud Rate
 *
 *
 Serial Command Interface (SCI): Go to the documentation that came
 with your device and find the serial command interface (may have a
 different name). It explains how messages are formatted and how to
 interpret the results. We'll need this later
 Setting up Serial port objects
 ==============================
 Basic Concepts

 *
 Matlab uses a special variable type to keep track of serial
 connections – the Serial Object.
 *
 Unlike nornal variables which have a single value, objects have
 many "attributes" or parameters that can be set. (ex. port number,
 baud rate, buffersize, etc)
 *
 One of those attributes is the port number. A label that
 cooresponds to which port your device is connected to.
 *
 In order to actually send or recieve data through the serial port
 object it must be open. When not in use it can be closed (not the
 same as deleting it)
 *
 You can have many different serial objects in memory. They can all
 send and receive data at the same time as long as they are each on
 a different port.
 *
 There can even be several objects associated with the same
 physical port. However, only one of those objects associated with
 a given port can actually be open (sending or receiving data) at
 any time.
 Creating a Serial Port Object

 Here is an example of how to do this. the only piece of information
 you must supply is which com port to use. The rest of the attributes
 are set to some default values:
 serialPort = serial('com1')
 Serial Port Object : Serial-COM1
 Communication Settings
 Port: COM1
 BaudRate: 9600
 Terminator: 'LF'
 Communication State
 Status: closed
 RecordStatus: off
 Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0
 Note that this list of parameters and attributes it returns is not
 exhaustive.
 Setting the Parameters

 Most of the time you don't want to use the default values. You can
 view or change any attribute using the functions get and set.
 get(serialPort, 'baudrate')
 ans =
 9600
 set(serialPort, 'BaudRate', 19200)
 get(serialPort, 'BaudRate')
 ans =
 19200
 This method is cumbersome if you have a lot of things you want to
 change. A better way to to set them when you create the Serial Object.
 serialPort_new = serial('com1', 'baudrate', 19200, 'terminator', 'CR')
 Serial Port Object : Serial-COM1
 Communication Settings
 Port: COM1
 BaudRate: 19200
 Terminator: 'CR'
 Communication State
 Status: closed
 RecordStatus: off
 Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0
 You can list as many properties as you want. The name of the property
 goes in single quotes (check spelling) and the value follows (if the
 value is text then use single quotes)
 The Parameters

 To see a list of parameters and their current values
 get(serialPort)
 ByteOrder = littleEndian
 BytesAvailable = 0
 BytesAvailableFcn =
 BytesAvailableFcnCount = 48
 BytesAvailableFcnMode = terminator
 BytesToOutput = 0
 ErrorFcn =
 InputBufferSize = 512
 Name = Serial-COM1
 ObjectVisibility = on
 OutputBufferSize = 512
 OutputEmptyFcn =
 RecordDetail = compact
 RecordMode = overwrite
 RecordName = record.txt
 RecordStatus = off
 Status = closed
 Tag = GarminGPS
 Timeout = 0
 TimerFcn =
 TimerPeriod = 1
 TransferStatus = idle
 Type = serial
 UserData = []
 ValuesReceived = 0
 ValuesSent = 0
 SERIAL specific properties:
 BaudRate = 19200
 BreakInterruptFcn =
 DataBits = 8
 DataTerminalReady = on
 FlowControl = none
 Parity = none
 PinStatus = [1x1 struct]
 PinStatusFcn =
 Port = COM1
 ReadAsyncMode = continuous
 RequestToSend = on
 StopBits = 1
 Terminator = LF
 Note that some values are just numbers, while others can only take on
 certain values in a list (ex. 'on' or 'off '). To see a list of all
 paremeters with valid choices type (note that the curly brace denotes
 the default value)
 set(serialPort)
 ByteOrder: [{littleEndian} | bigEndian]
 BytesAvailableFcn: string -or- function handle -or- cell array
 BytesAvailableFcnCount
 BytesAvailableFcnMode: [{terminator} | byte]
 ErrorFcn: string -or- function handle -or- cell array
 InputBufferSize
 Name
 ObjectVisibility: [{on} | off]
 OutputBufferSize
 OutputEmptyFcn: string -or- function handle -or- cell array
 RecordDetail: [{compact} | verbose]
 RecordMode: [{overwrite} | append | index]
 RecordName
 Tag
 Timeout
 TimerFcn: string -or- function handle -or- cell array
 TimerPeriod
 UserData
 SERIAL specific properties:
 BaudRate
 BreakInterruptFcn: string -or- function handle -or- cell array
 DataBits
 DataTerminalReady: [{on} | off]
 FlowControl: [{none} | hardware | software]
 Parity: [{none} | odd | even | mark | space]
 PinStatusFcn: string -or- function handle -or- cell array
 Port
 ReadAsyncMode: [{continuous} | manual]
 RequestToSend: [{on} | off]
 StopBits
 Terminator
 Suggestions on Parameters

 Some of these you don't really need to change. Others you will want to
 change.
 Always Set
 You always have to set this to match what is specified in the
 documentation that came with your device.
 *
 BaudRate
 Always Check
 The defaults here are usually OK, but you should check that they match
 whatever is specified in the device documentation.
 *
 Terminator (sometimes have to change) 'LF' is linefeed, 'CR' is
 carrage return, etc
 *
 FlowControl (defaults usually OK)
 *
 Parity (defaults usually OK)
 *
 DataBits (defaults usually OK)
 *
 ByteOrder (more on this later)
 Good Idea To Set
 Your device will work without setting these but you can set these to
 make your life easy later.
 *
 Tag: The tag is like giving the serial port object a nickname. If
 have a few different serial ports open this a good way to keep
 track of them. Example, serialPort is configured to talk with a
 garmin GPS.
 set(serialPort, 'tag', 'GarminGPS')
 *
 TimeOut: If you try to read data from the serial port and there is
 no data in the buffer matlab will keep trying to read for
 "Timeout" seconds (default 10 sec):
 get(serialPort, 'Timeout')
 ans =
 10
 This might really slow down your code. There are ways around this, but
 if there is no data there you probably don't want to sit there for 10
 seconds, so consider making it smaller. On the other hand, it does
 take some time for messages to pass over the wire, so setting it to
 zero means you will probably miss a lot of messages.
 *
 InputBufferSize: This specifies how long the buffer is. The
 default is 512 bytes. That might not be long enough for your
 messages. Especially if you think the sensor will be streaming
 data back more frequently than you plan on reading the buffer.
 Remember if the sensor tries to send data and the buffer is full
 it will discard some old data and it will be gone forever. On the
 otherhand, having an unessecarliy large buffer can be cumbersome.
 Closing Serial Port Objects
 ===========================
 Concepts

 When your done with a serial port object it doesn't go away. Also,
 closing it, deleting it from memory and clearing it from the workspace
 are three separate actions.
 Example Code

 For technical reasons you have to use this systax to properly get rid
 of it:
 delete(serialPort_new)
 clear serialPort_new
 Comprehensive Example On Creating a New Port
 ==
 Sometimes, if your program does not terminate correctly you have to
 abort (CTRL-C) before you can properly delete or close a port. So, it
 is good practice to check for old serial objects before creating new
 ones:
 oldSerial = instrfind('Port', 'COM1'); % Check to see if there are
 existing serial objects (instrfind) whos 'Port' property is set to
 'COM1'
 % can also use instrfind() with no input arguments to find ALL
 existing serial objects
 if (~isempty(oldSerial)) % if the set of such objects is not(~) empty
 disp('WARNING: COM1 in use. Closing.')
 delete(oldSerial)
 end
 % creating a new serial object for my GPS (note I can do all this in
 one line if I wanted to
 serGPS = serial('COM1'); % Define serial port
 set(serGPS, 'BaudRate', 4800); % instructions for GPS gave me this
 set(serGPS, 'Tag', 'GPS'); % give it a name for my own reference
 set(serGPS, 'TimeOut', .1); %I am willing to wait 0.1 secs for data to
 arive
 % I wanted to make my buffer only big enough to store one message
 set(serGPS, 'InputBufferSize', 390)
 get(serGPS) %so you can see my result
 WARNING: COM1 in use. Closing.
 ByteOrder = littleEndian
 BytesAvailable = 0
 BytesAvailableFcn =
 BytesAvailableFcnCount = 48
 BytesAvailableFcnMode = terminator
 BytesToOutput = 0
 ErrorFcn =
 InputBufferSize = 390
 Name = Serial-COM1
 ObjectVisibility = on
 OutputBufferSize = 512
 OutputEmptyFcn =
 RecordDetail = compact
 RecordMode = overwrite
 RecordName = record.txt
 RecordStatus = off
 Status = closed
 Tag = GPS
 Timeout = 0.1
 TimerFcn =
 TimerPeriod = 1
 TransferStatus = idle
 Type = serial
 UserData = []
 ValuesReceived = 0
 ValuesSent = 0
 SERIAL specific properties:
 BaudRate = 4800
 BreakInterruptFcn =
 DataBits = 8
 DataTerminalReady = on
 FlowControl = none
 Parity = none
 PinStatus = [1x1 struct]
 PinStatusFcn =
 Port = COM1
 ReadAsyncMode = continuous
 RequestToSend = on
 StopBits = 1
 Terminator = LF
 Writing To The Serial Port
 ==========================
 Before you can write to your serial port, you need to open it:
 fopen(serGPS)
 Now you need to figure out two things from the Serial Command
 Interface (SCI) that came with your device:
 1.
 Will you send binary data (bytes) or text (ascii)?
 2.
 What will you send to it?
 If your SCIs messages look like a list of numbers (ex:
 [4][253][1][1])), its probably the first choice. Note that even though
 what you send is actually binary, the documentation might list it as
 numbers between 0 and 255, or hexidecimal numbers.
 If your SCIs messages look like a mix of text and numbers (ex: 'MOVE
 31'), its probably the second choice.
 Writing Binary Data

 Use the command fwrite to send four bytes of binary data
 fwrite(serGPS, [0, 12, 117, 251]);
 Writing ASCI Commands

 Use the command fprintf to send asci data. You can use a mix of text
 in single quotes and variables values.
 moveNum = 98; pauseTime = 2; % just some example data
 fprintf(serGPS, 'MOVE %d, PAUSE %d', [moveNum, pauseTime]) ; % note
 Its important to understand that a number, (ex. 98) is not sent as a
 number. Its actually the asci code for the characters '9' and '8'.
 Example Code

 Reading From The Serial Port
 ============================
 Streaming vs Polling: Flushing the Buffer

 If you are going to poll the device (send it a request each time you
 want to get data) you don't want to read any old data that might be
 left over in the buffer. This is a useful and quick way to clean it
 out
 N = serRoomba.BytesAvailable();
 while(N~=0)
 fread(serRoomba,N);
 N = serRoomba.BytesAvailable();
 end
 Reading Formatted ASCI

 Say my device returns a text sentence like this
 X, 2.1, Y, 3.2, T, -0.5
 Where X is the x position, Y the y position and T is the heading.
 sentence = fscanf(serialObj, '%s'); % this reads in as a string (until
 a terminater is reached)
 [x, xPosition, y, yPosition, t, Heading] = strread(sentence,
 '%s%f%s%f%s%f', 1, 'delimiter', ',')
 % decodes "sentence" as string, float, string, float, string, float"
 seperated (delimted) by commas
 ans =
 x = 'X'
 xPosition = 2.1
 y = 'Y'
 yPosition = 3.2
 t = 'T'
 Heading = -0.5
 Reading Data

 You can use fread to read in data (not text). It can automatically
 format the data for you. Here is an example. Say the buffer currently
 has 2 bytes of data in it
 [1], [8]
 a = fread(serialObj, 2);
 % Will read two bytes and create a vector
 a = [1; 8]
 If you omit the ,2 the result would be the same -- it will just read
 until either a terminater is reached or there is no more data in the
 buffer
 Alternatively, suppose you know those two bytes are used to express a
 singel 16-bit integer, you can use
 a = fread(serialObj, 1, 'int16')
 ans =
 264
 Which is equivilent to 1*(256^1) + 8*(256^0)
 Note that even though we only "read" 1 value, two elements were take
 out of the buffer since a 16 bit interger is actually composed of two
 bytes. To see a list of all format types, type
 >> help serial/fread
 Putting It All Together
 =======================
 Good Programming Advice

 *
 to make your code crash resistance try: preinitializating any
 return variables, then put the reading and writiing to the serial
 port inside a T RY-CATCH statement
 *
 Debugging??
 Example 1: GPS Initialization

 function [serGPS] = initializeGarmin(ComPortNumber)
 %This function initializes the serial port properly
 % for use with the Garmin GPS
 %COMPORT is the number of the serial port: ex use 3 for 'COM3'
 % port number can be checked in
 % Control Panel/System/Hardware/DeviceManager/Ports
 % serGPS output is a matlab serial port object
 % Esposito 6/25/2008 with code from regneier, bishop, et al; modified
 by
 % MIDN 1/C Li
 port = strcat('COM',num2str(ComPortNumber));
 out = instrfind('Port', port); % Check to see if THAT serial port is
 already defined in MATLAB
 if (~isempty(out)) % It is
 disp('WARNING: port in use. Closing.')
 if (~strcmp(get(out(1), 'Status'),'open')) % Is it open?
 delete(out(1)); % If not, delete
 else % is open
 fclose(out(1));
 delete(out(1));
 end
 end
 serGPS = serial(port); % Define serial port
 set(serGPS, 'BaudRate', 19200); % Default Baud rate of 19200
 set(serGPS, 'Tag', 'GPS'); % give it a name
 set(serGPS, 'TimeOut', .1);
 % want to make the buffer big enough that new message can always fit
 %(example is 389 characters long but messsage length is variable)
 % but not so big as to hold 2 messages
 set(serGPS, 'OutputBufferSize', floor(389*1.5));
 set(serGPS, 'InputBufferSize', floor(389*1.5));
 fopen(serGPS); % Open it;
 pause(1) % give it a second to start getting data
 disp('Garmin Initialized')
 Example 1: Read GPS

 function [lat, lon] = ReadGarmin(serGPS)
 % Reads a streaming GPS. If no data, does not wait, returns nans.
 % Note that this code never crashes. Even if the GPS unit dies or gets
 unplugged, or cant find satelites.
 % serial port must first be initialized using initializeGarmin
 % inputs: serGPS (from initializeGarmin)
 % Outputs: x (lon) and y(lat)
 %% initialize to nan, will have something to return even if serial
 comms fail
 lat =nan; lon = nan;
 %% IF THERE IS NO DATA?
 if (get(serGPS, 'BytesAvailable')==0)
 disp('Data not avail yet. Try again or check transmitter.')
 return
 end
 %% IF THERE IS DATA
 while (get(serGPS, 'BytesAvailable')~=0)
 try
 % read until terminator
 sentence = fscanf(serGPS, '%s');
 Ns = length(sentence);
 % Make sure header is there
 if strcmp(sentence(1:6),'$GPRMC')
 [prefixRMC,timeRMC,ActiveRMC,lat,latdirRMC,lon,londirRMC,spdKnots,AngleDeg]
 = strread(sentence, '%s%f%s%f%s%f%s%f%f', 1, 'delimiter', ',');
 % these cases mean that the GPS can't find satelities
 % (status not equal to A (active)
 % or the sentence wasn't long enough to fill in lat and lon
 if isempty(lat)||(ActiveRMC{1} ~='A')
 lat = nan;
 end
 if isempty(lon)||(ActiveRMC{1} ~='A')
 lon = nan;
 end
 end
 catch ERR_MSG
 % if something didn't work correctly the error message displays
 disp('Error Reading Data! Check Unit')
 end
 end
 Example 2: Initialize the iRobot Create

 function [serPort] = RoombaInit(my_COM);
 % initializes serial port for use with Roomba
 % COMMport is the number of the comm port
 % ex. RoombaInit(1) sets port = 'COM1'
 % note that it sets baudrate to a default of 57600
 % can be changed (see SCI). Will NOT work if robot is plugged into
 % charger.
 % An optional time delay can be added after all commands
 % if your code crashes frequently
 global td
 td = 0.01;
 % This code puts the robot in SAFE(130) mode, which means robot stops
 % when cliff sensors or wheel drops are true; or when plugged into
 charger
 Contrl = 132;
 % Esposito 9/2008
 warning off
 %% set up serial comms,
 % output buffer must be big enough to take largest message size
 comm = strcat('COM', num2str(my_COM));
 a = instrfind('port',comm);
 if ~isempty(a)
 disp('That com port is in use. Closing it.')
 fclose(a)
 delete(a)
 end
 disp('Establishing connection to Roomba...');
 % defaults at 57600, can change
 serPort = serial(comm,'BaudRate', 57600);
 set(serPort,'Terminator','LF')
 set(serPort,'InputBufferSize',100)
 set(serPort, 'Timeout', 1)
 set(serPort, 'ByteOrder','bigEndian');
 set(serPort, 'Tag', 'Roomba')
 disp('Opening connection to Roomba...');
 fopen(serPort);
 %% Confirm two way connumication
 disp('Setting Roomba to Control Mode...');
 % Start! and see if its alive
 Start=[128];
 fwrite(serPort,Start);
 pause(.1)
 fwrite(serPort,Contrl);
 pause(.1)
 % light LEDS
 fwrite(serPort,[139 25 0 128]);
 % set song
 fwrite(serPort, [140 1 1 48 20]);
 pause(0.05)
 % sing it
 fwrite(serPort, [141 1])
 disp('I am alive if my two outboard lights came on')
 confirmation = (fread(serPort,4))
 pause(.1)
 Example 2: Read all sensors from the Create.
 --
 function [BumpRight, BumpLeft, BumpFront, Wall, virtWall, CliffLft,
 ...
 CliffRgt, CliffFrntLft, CliffFrntRgt, LeftCurrOver, RightCurrOver, ...
 DirtL, DirtR, ButtonPlay, ButtonAdv, Dist, Angle, ...
 Volts, Current, Temp, Charge, Capacity, pCharge] =
 AllSensorsReadRoomba(serPort);
 % Reads all 23 Roomba Sensors from a single data packet. Values are
 % [BumpRight (0/1), BumpLeft(0/1), BumpFront(0/1), Wall(0/1),
 virtWall(0/1), CliffLft(0/1), ...
 % CliffRgt(0/1), CliffFrntLft(0/1), CliffFrntRgt(0/1), LeftCurrOver
 (0/1), RightCurrOver(0/1), ...
 % DirtL(0/1), DirtR(0/1), ButtonPlay(0/1), ButtonAdv(0/1), Dist
 (meters since last call), Angle (rad since last call), ...
 % Volts (V), Current (Amps), Temp (celcius), Charge (milliamphours),
 Capacity (milliamphours), pCharge (percent)]
 % Can add others if you like, see code
 % Esposito 3/2008
 warning off
 global td
 sensorPacket = [];
 % flushing buffer
 confirmation = (fread(serPort,1));
 while ~isempty(confirmation)
 confirmation = (fread(serPort,26));
 end
 %% Get (142) ALL(0) data fields
 fwrite(serPort, [142 0]);
 %% Read data fields
 BmpWheDrps = dec2bin(fread(serPort, 1),8); %
 BumpRight = bin2dec(BmpWheDrps(end)) % 0 no bump, 1 bump
 BumpLeft = bin2dec(BmpWheDrps(end-1))
 if BumpRight*BumpLeft==1 % center bump sensor is really just
 % left AND right at same time
 BumpRight =0;
 BumpLeft = 0;
 BumpFront =1;
 else
 BumpFront = 0;
 end
 Wall = fread(serPort, 1) %0 no wall, 1 wall
 CliffLft = fread(serPort, 1) % no cliff, 1 cliff
 CliffFrntLft = fread(serPort, 1)
 CliffFrntRgt = fread(serPort, 1)
 CliffRgt = fread(serPort, 1)
 virtWall = fread(serPort, 1)%0 no wall, 1 wall
 motorCurr = dec2bin(fread(serPort, 1),8);
 Low1 = motorCurr(end); % 0 no over current, 1 over Current
 Low0 = motorCurr(end-1); % 0 no over curr, 1 over Curr
 Low2 = motorCurr(end-2); % 0 no over curr, 1 over Curr
 LeftCurrOver = motorCurr(end-3) % 0 no over curr, 1 over Curr
 RightCurrOver = motorCurr(end-4) % 0 no over curr, 1 over Curr
 DirtL = fread(serPort, 1)
 DirtR = fread(serPort, 1)
 RemoteCode = fread(serPort, 1); % coudl be used by remote or to
 communicate with sendIR command
 Buttons = dec2bin(fread(serPort, 1),8);
 ButtonPlay = Buttons(end)
 ButtonAdv = Buttons(end-2)
 Dist = fread(serPort, 1, 'int16')/1000 % convert to Meters, signed,
 average dist wheels traveled since last time called...caps at +/-32
 Angle = fread(serPort, 1, 'int16')*pi/180 % convert to radians,
 signed, since last time called, CCW positive
 ChargeState = fread(serPort, 1);
 Volts = fread(serPort, 1, 'uint16')/1000
 Current = fread(serPort, 1, 'int16')/1000 % neg sourcing, pos charging
 Temp = fread(serPort, 1, 'int8')
 Charge = fread(serPort, 1, 'uint16') % in mAhours
 Capacity = fread(serPort, 1, 'uint16')
 pCharge = Charge/Capacity *100 % May be inaccurate
 %checksum = fread(serPort, 1)
 pause(td)
 Page 16 of 16

			
			

		
		
		
		
		

		
		
			 	90e18_fV016
	MATDOC MOUNTING ASSISTIVE TECHNOLOGY DOCUMENTATION [ENTER CLIENT NAME IN
	OTRAS LENGUAS HISPÁNICAS I TEORÍA LAS DISTINTAS LENGUAS HISPÁNICAS
	Legislación Estatal Normativa Sobre Medio Ambiente ley 252009
	TEORÍA ANTROPOLÓGICA CONTEMPORÁNEA PROGRAMA DE POSGRADO EN ANTROPOLOGÍA SOCIAL
	PROPIEDADES DE LA PALABRA DESDE UNA PERSPECTIVA LÉXICA DE
	Coordination of Transportation in South Carolina Interim Report
	C HAIRE RELATIONS DE SERVICE JOURNÉES D’OUVERTURE DE L’UNIVERSITÉ
	DEVELOPMENT SERVICES TECHNICAL ADVISORY COMMITTEE CHARTER GENERAL SUMMARY THE
	PODER JUDICIAL – DIRECCIÓN DE PLANIFICACIÓN SAN JOSÉ
	Estado de Mato Grosso Prefeitura Municipal de Paranatinga Controle
	SEPTIEMBRE 3 DE 2013 GM COLMOTORES PRESENTA EL CHEVROLET
	Souto%20mini%20CV
	LINKS TO SITES MENTIONED (AND RELATED) IN WRITING FOR
	LEERLINGEN ZELF INSTRUCTIES LATEN MAKEN HTTPWIKIWIJSSAMENDELENNLGETSMPID6941DS1&RCTJ&FRM1&Q&ESRCS&SAU&EILQNULJAYMKONAOGPAF&VED0CBYQFJAA&USGAFQJCNFFBQELGMBS0MG7BS2NMYS8DHISW HOOFDSTUK DOCENTEN
	JUSTIFICATION OF ANIMAL NUMBERS “THE GOAL OF ESTIMATING SAMPLE
	P Rocedura Procesu Certyfikacji
	12 DECEMBER 2021 GEMEENTE AMSTERDAM PAGINA 0 VAN 3
	DOC NO MBWTG006 RISKBEDÖMNING – ATT ARBETA UNDER GRAVIDITET
	Specyfikacja Istotnych Warunków Zamówienia Część iii Opis Przedmiotu Zamówienia
	UNIVERSITY OF PITTSBURGH ENVIRONMENTAL HEALTH AND SAFETY BSL2 LABORATORY
	ALNUS GLUTINOSA ALISO FAMILIA BETULACEAE NOMBRE COMÚN ALISO LUGAR
	PRESSEMITTEILUNG AMERICAN WAY OF DRIVE DIE GESCHICHTE DER KULTCARAVANS
	0 English Règlement de L’ontario 85221 Pris en Vertu
	HOGYAN GONDOLKODOTT ORWELL AZ IDEÁLIS NYELVRŐL? TUDOMÁNYOS DIÁKKÖRI DOLGOZAT
	formularz-zgloszenia-uczestnika-do-projektu-radim-1614690951
	SUPPLEMENTAL GENERAL CONDITIONS MAJOR WORKS SUPPLEMENTAL GENERAL CONDITIONS PROJECT
	APSTIPRINĀTI AR JAUNJELGAVAS NOVADA DOMES 2018 GADA 26
	Wypadki z Udziałem Pieszych w Okresie Styczeń – Wrzesień
	PROGRAMA DE ENTRENAMIENTO EN EL USO DE LA GUÍA

			

		
			 	SYGNALIZATORY I SYGNAŁY NA ODCINKU GRANICZNYM I W STACJACH
	11 GOBIERNO DEL ESTADO DE MORELOS CONSEJERÍA JURÍDICA REGLAMENTO
	C ORRECTION DU DNB 2018 (PONDICHÉRY) QUESTION
	USE OF FORCE AND DEADLY FORCE MODEL POLICY MN
	REQUIRED READING FOR OB LECTURES TEXTBOOK MATERNALCHILD NURSING BY
	UNIVERSITE PAUL SABATIER FACULTES DE MEDECINE PURPAN ET
	CONSILIERE PENTRU SĂNĂTATEA REPRODUCERII ADRESATĂ PERSOANELOR HIVPOZITIVE DRAFT
	REGULAMIN REKRUTACJI I UCZESTNICTWA W PROJEKCIE EDYCJA II ROK
	2 ZAKON O SPREMEMBI IN DOPOLNITVI ZAKONA O USTAVNEM
	Facultad de Derecho Universidad Autónoma de Madrid (uam) Estudio
	AIDE AU STOCKAGE DE VIN CAS DES MODIFICATIONS
	LEY FORAL REGULADORA DE LA DEDUCCIÓN POR PENSIONES
	JUNIO 2014 FUTBOL Y FUTBOLSALA LUNES 16 MARTES 17
	EARLY CHILDHOOD NURSING REFERRAL MARION COUNTY HEALTH DEPARTMENT (TEMPORARY
	GOETHE–JINCHUANG SPRACHLERNZENTRUM SHANGHAI KURSGEBÜHREN □ LEHRBUCH □ SPRACHKURSANMELDEFORMULAR PERSÖNLICHE
	BAGAIMANA KAUM INJILI MEMANDANG GEREJA KATOLIK 25 VERITAS 91
	AFFALDSPLAN FOR MODTAGELSE OG HÅNDTERING AF AFFALD FRA SKIBE
	MARINE CONSERVATION ZONES (MCZS) POTENTIAL SITE OPTIONS FOR WELSH
	ALMOGUERA (GUADALAJARA) INTRODUCCIÓN NOMBRE ALMOGUERA NOMBRE DE ORIGEN ÁRABE
	CLASSIFICATIONSALARY RANGE REVIEW REQUEST (TO BE COMPLETED BY REQUESTING

			

		

	

 Todos los derechos reservados @ 2021 - FusionPDF

